碳排放_百度百科

本站原创 中衍期

碳排放_百度百科

  声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

  碳排放是关于温室气体排放的一个总称或简称。温室气体中最主要的气体是二氧化碳,因此用碳(Carbon)一词作为代表。虽然并不准确,但作为让民众最快了解的方法就是简单地将“碳排放”理解为“二氧化碳排放”。

  人类的任何活动都有可能造成碳排放,比如普通百姓简单的烧火做饭都能造成碳排放,任何物体被火烧后的废气都会产生碳排放。多数科学家和政府承认温室气体已经并将继续为地球和人类带来灾难,所以“(控制)碳排放”、“碳中和”这样的术语就成为容易被大多数人所理解、接受、并采取行动的文化基础。

  碳排放是关于温室气体排放的一个总称或简称。温室气体中最主要的气体是二氧化碳,因此用碳(Carbon)一词作为代表。虽然并不准确,但作为让民众最快了解的方法就是简单地将“碳排放”理解为“二氧化碳排放”。多数科学家和政府承认温室气体已经并将继续为地球和人类带来灾难,所以“(控制)碳排放”、“碳中和”这样的术语就成为容易被大多数人所理解、接受、并采取行动的文化基础。我们的日常生活一直都在排放二氧化碳,而如何通过有节制的生活,例如少用空调和暖气、少开车、少坐飞机等等,以及如何通过节能减污的技术来减少工厂和企业的碳排放量,成为本世纪初最重要的环保话题之一。

  燃料本身就是有机碳氢化合物,所以如果不能与空气中的氧气发生燃烧化学反应变成对人体和环境基本无害的水和二氧化碳(但二氧化碳正在被认为是对全球大气环境有危害的温室气体),就有可能成为有害物质而排放出,例如当燃料和空气的比例过小(混合气过稀)而导致发动机失火时就是如此,这是碳氢化合物(HC)排放的主要机理之一;燃料如果太多会导致混合气过浓而不能完全燃烧,其中含碳较多的成分要么变成含碳较少的碳氢化合物或醛类物质(气体),要么变成含碳较多结构更为复杂的颗粒物(PM),或者变成固体的碳烟颗粒物(也是PM),或者变成燃烧中间产物一氧化碳(CO),所以氧气不足造成的不完全燃烧产物是碳氢化合物(HC)排放的又一个机理,也是碳烟及颗粒物(PM)排放和一氧化碳(CO)排放的唯一机理。碳烟的生成需要氧气严重不足,所以主要在非均质燃烧的柴油机中生成,汽油机因为燃料与空气均质混合后才燃烧,并且混合气一般不会太浓,所以一般没有碳烟,颗粒物(PM)排放也很少(但如果有机油进入混合气中,如活塞环坏了导致串机油或燃烧混合油的二冲程汽油机,则也会产生碳烟和颗粒物;另外,如果汽油机供油系统故障导致供油失控,则也会产生碳烟)。氮氧化物(NOx)是由空气中的氧气和氮气反应生成的,包括NO、NO

  等,其中又以NO为主,但是空气中的氧气和氮气在大气状态下并不会发生化学反应,只是因为燃烧形成的1200~2400℃的高温环境为氧气和氮气反应生成NO、NO

  创造了条件,才造成了氮氧化物(NOx)排放,这就是氮氧化物(NOx)排放的形成机理。铅盐直接来自于燃料,只要燃料不含铅,发动机就不会有铅污染。

  碳排放:碳排放不仅仅是燃料燃烧会产生,人口的增加,经济的增长也是会使碳排放增加的原因。

  走楼梯上下一层楼能减少0.218千克碳排放,少开空调一小时减少0.621千克碳排放,少用一吨水减少0.194千克碳排放……哥本哈根气候变化大会结束之后,“低碳”概念开始高频率地走进人们日常生活。现在,杭州开始建设低碳城市,大家对碳排放量的多少非常关心,但又知道得很模糊,不知道到底该怎么算的。

  事实上,碳排放和我们每天的衣食住行息息相关。至于碳排放量有多少,有关专家给出碳排放的计算公式:

  中途旅行:200至1000公里=55+0.105×(公里数-200);

  据了解,碳足迹计算国际上有很多通用公式,这些公式是由联合国及一些环保组织共同制作的。在这些公式的基础上使用中国本土的统计数据和转换因子,使计算更符合中国国情,也更准确地反映你的实际碳足迹。

  在中国,每年的能源消费总量都发布在《中华人民共和国国民经济和社会发展统计公报》中,比如,2008年“全年能源消费总量为28.5亿吨标准煤”。标准煤亦称煤当量。1吨标准煤的能量,约为0.7吨纯碳充分燃烧释放的热量。0.7吨乘以3.7得出:消耗1吨标准煤的能源,排放的二氧化碳量为2.6吨。任何普通人,只要记住“2.6”这个简单数字,就能从国家公布的统计报告中,估算出中国全年的二氧化碳排放量。以2008年为例,全年能源总消费量为28.5亿吨标准煤,其中3亿吨来自传统生物质能源(非化石燃料),2.5亿吨来自可再生能源,现在开什么店最挣钱实际消费的化石燃料能源量为23亿吨标准煤。23亿吨乘以2.6,得出二氧化碳排放量为59.8亿吨。根据当年的统计公报,中国人口为132802万人,由此计算出,2008年中国人均二氧化碳排放量为4.5吨——这与国内外学术界认可的数字十分吻合。

  碳排放脱钩是经济增长与温室气体排放之间关系不断弱化乃至消失的理想化过程,即实现经济增长基础上,逐渐降低能源消费量。简而言之,即随着经济的继续增长,碳排放总量却逐渐减少直至消失的理想过程。

  针对全球气候变暖的挑战,国际社会在1992年制定了《联合国气候变化框架公约》(以下简称《公约》),并于1997年12月在日本京都召开的《公约》第三次缔约方大会上达成了《京都议定书》 (以下简称《议定书》)。《议定书》要求30多个附件一国家(包括发达国家经济转型国家)在2008至2012年间,把温室气体的排放量平均比1990年削减5.2%。在得到占发达国家1990年CO2排放总量的55%以上的缔约发达国家批准后,《议定书》于2005年2月16日正式生效。这标志着国际社会进入了一个实质性减排温室气体的阶段,人类发展史上首次具有了一个国际法律框架,用以限制人类活动对地球系统的碳循环和气候变化的干扰。减少碳排放成为缔约国家社会经济发展和生产经营活动的重要目标之一。

  《议定书》设计的清洁发展机制(CDM)为温室气体减排提供了一个双赢的长期行动框架。是《议定书》设计的三个灵活机制之一,其初衷是为了各国可以采用最小成本且有效的方式来削减排放,各国可以运用这些机制相互协作以履行减排的承诺。该机制允许发达国家发展中国家开展减排项目来获取减排信用,并从2000年开始到第一个承诺期(2008-2012)执行。它既可以使发达国家降低减排的成本,同时又使发展中国家通过项目合作,获得相应的资金和技术支持。中国可以通过积极参与项目获得巨大的经济收益,据估计中国可以提供全球CDM所需项目的一半以上。此外,碳交易市场也有望成为世界最大的市场之一。

  《议定书》生效是各国在政治、经济、能源、环境等方面利益相互妥协的结果。由于各国在温室气体减排方面具有共同但有区别的责任,加上资源禀赋和经济发展水平差异较大,在履行减排义务时付出的代价不同,所以在减排的国际谈判中不得不考虑各自的国家利益,使得谈判过程成为一个各个国家或利益集团在政治、经济、资源、环境等方面博弈的复杂过程。

  由于占约40%的美国和澳大利亚没有批准《议定书》,并且《议定书》最终文本是在谈判过程中对一些国家的减排义务作了较大让步的情况下才达成的妥协方案,所以《议定书》执行的意义和效果并不显著。

  即使《议定书》所规定的各项目标能够实现,与稳定气候变化的最终目标仍相距甚远。由于温室气体减排的成本较高,对经济将产生不可忽视的重要影响。所以,实力薄弱的发展中国家无力承担如此巨大的经济负担,需要发达国家提供资金和技术援助。另一方面,减排的效果如何还有很大的不确定性,因此国际社会实现稳定气候变化的目标仍然任重道远。

  全球碳交易市场年均交易额已达300亿美元,预计将来还会大幅增加。在欧洲,企业可以通过买卖二氧化碳排放量信用配额来实现排放达标的目标。碳排放已经成为一种市场化的交易。在伦敦金融城,除了股票、证券和期货交易所外,还有不少专门从事碳排放交易的公司。

  早在2002年,英国就自发建立了碳交易体系。另外,在伦敦证券交易所创业板上市的公司中,有60多家企业致力于研发有助减少碳排放的新技术。虽然在伦敦没有一所类似股票交易所的碳交易所,但是这些大大小小从事碳排放交易的公司企业却早就联合在一起了。碳排放价格一直处于波动状态,2006年交割的碳排放价格约为每吨16.50欧元(约合人民币165元),而2007年交割的碳排放价格则为17欧元。除英国外,欧洲各国目前都有活跃的碳排放交易市场。2002年,荷兰和世界银行首先开始碳交易时,碳排放的价格为每吨5欧元左右,此后开始上扬。2004年达到6欧元,到2006年4月上旬,每吨价格超过了31欧元。2006年,世界二氧化碳排放权交易总额达280亿美元,为2005年的2.5倍,交易的二氧化碳量达到了13亿吨。

  英国、美国已经是全球碳排放交易的两大中心——担纲的分别是伦敦金融城和芝加哥气候交易所。现在,参与碳排放交易的政治家和商人都将目光投向了亚洲,投向了中国。碳排放交易是用经济手段推动环保的国际通行办法,是清洁发展机制,简称CDM的核心内容。1997年开始接受签署的《京都议定书》,《联合国气候变化框架公约》下的重要议定书,是碳排放全球交易的政策驱动力。根据《京都议定书》的约定,“已发展国家”有已经核准的2008-2012年间温室气体排放量上限;同时,至2012年,温室气体平均排放量必须比1990年的水平低5.2%。为减少“全球蔓延”的温室气体,《京都议定书》同时规定,协议国家(现有169个国家)承诺在一定时期内实现一定的碳排放减排目标,各国可将自己的减排目标分配给国内不同的企业。当某国不能按期实现减排目标时,可以从拥有超额配额(或排放许可证,英文简称CER)的国家(主要是发展中国家)购买一定数量的配额(或排放许可证)以完成自己的减排目标。同样的,在一国内部,不能按期实现减排目标的企业也可以从拥有超额配额(或排放许可证)的企业那里购买一定数量的配额(或排放许可证)以完成自己的减排目标,CDM便因此形成,碳排放形成“大宗商品交易”的国际市场。

  受《京都议定书》的政策牵引,英国早在2002年即启动自愿排放贸易计划,31个团体根据1998-2000年基线自愿性设定排放减量目标,包括了6种温室气体。2005年,交易体系启动,该体系覆盖欧盟25个成员国,包括近12000个燃烧过程排放二氧化碳的工业实体,遂使欧盟成为世界上最大的碳排放交易市场。伦敦金融城则是欧洲碳排放交易市场的中心。2006年,其碳排放交易额超过200亿欧元,历年来呈翻番增长趋势。“走在环保问题的前列,已经为金融城带来了切实利益。”伦敦金融城当局政策与资源委员会主席迈克尔·斯奈德如此评价金融城的碳排放交易。

  美国目前尚未加入签署《京都议定书》,其制定了“10年内减少20%的汽油用量”的发展减排计划。2003年建立的芝加哥气候交易所是全球首个以温室气体减排为目标和贸易内容的专业市场平台,其包括了二氧化碳、甲烷、氧化亚氮、氢氟碳化物、全氟化物、六氟化硫等6种温室气体的排放交易,会员200余个,这足以使其成为碳排放交易的美洲中心。

  全球变暖的主要原因是人类在近一个世纪以来大量使用矿物燃料(如煤、石油等),排放出大量的CO2等多种温室气体。由于这些温室气体对来自太阳辐射的可见光具有高度的透过性,而对地球反射出来的长波辐射具有高度的吸收性,也就是常说的“温室效应”,导致全球气候变暖。全球变暖的后果,会使全球降水量重新分配,冰川和冻土消融,海平面上升等,既危害自然生态系统的平衡,更威胁人类的食物供应和居住环境。

  与其他污染物不同,CO2的减排存在很大的技术难度。目前,主要有3种技术方向和选择。一是采取化石能源的替代技术

  ,主要包括清洁能源替代技术、可再生能源技术、新能源技术(核能目前已经被排除在联合履约和CDM机制之外);二是提高能效,进而通过减少能耗实现削减CO2排放;三是碳埋存及生物碳汇技术。此外,税收等财政金融政策可以起到加速技术改造进程,优化资源配置,降低全社会减排成本的作用。

  从目前情况来看,短期内,通过能源替代技术改变能源结构的作用有限。人类存在采用低碳或无碳的替代能源技术的可能性,但还有很长一段路要走。为此,重点研究了现有能源的相互替代的可能性与效果。 在考虑宏观经济系统各个方面的复杂相互作用的基础上,我们初步建立了以减排政策为核心的一般均衡模型,应用这一模型对能源结构调整、经济结构调整、征收碳税等进行了政策模拟分析,主要结论如下。

  中国2003年能源消费中,煤的比重为67.1%,天然气的比重为2.8%。如果将煤的使用比重降低1个百分点,代之以天然气,CO2的排放量会减少0.74%,而GDP会下降0.64%,居民福利降低0.60%,各部门生产成本普遍提高,其中电力部门受影响最大,平均成本提高0.60%;如果“气代煤”的比例为5%,CO2的排放量会减少4.9%,而GDP会下降2.0%,居民福利减低2.0%,电力部门平均成本提高2.4%。 因此,能源结构调整的后果是,一方面CO2排量会显著降低,另一方面GDP增长速度会放缓,居民福利受到一定的影响。在中国全面建设小康社会的过程中,经济必须保持一定的增长速度,因此,即使在能源供给充分的条件下,能源结构调整的速度不应也不可能太快。

  技术和提高能源利用效率是最有效的途径。根据以上预测,即使采取较积极的能源政策,包括提高可再生能源和油气等清洁能源的比例,2020年中国煤炭消费仍占约60%。而碳埋存和相关碳汇技术因成本等问题难以推广。因此,最可行也是最有效的技术减排措施就是采取清洁生产等技术来提高能效,特别是煤炭的清洁利用技术在未来15年中将扮演十分重要的角色。能效技术不仅减少能源利用、减少排放、提高成本效益,还能通过技术转移发挥更大潜力,因此是CDM项目最优先的选择。另外,在农业方面,提高化肥利用率。在保证作物产量的前提下,实现减少化肥消耗量,对于减少化肥生成过程中的CO2排放和保护环境都具有重要的作用。

  造林、林地恢复、丰产林管理、采伐管理、森林防火和病虫害控制等可增加森林固碳量,减少碳排放。据初步估计,中国实施的林业六大重点工程的固碳潜力约200亿吨,持续时间约为100年。合理的农业管理措施(包括平衡施肥、合理种植、增加秸秆还田、少耕免耕等)和减少土壤侵蚀能大大提高农业土壤固碳量。根据目前的野外定位研究成果,在施用有机肥的情况下,除东北部分地方外,土壤有机质均会增加,平均增加幅度为8.52~59.78 g/(m2·yr)。农作物秸秆的还田,类似于施用有机肥,可以增加土壤的有机质含量,平均增加幅度45.24 g/(m2·yr)。免耕和少耕可以分别平均增加土壤有机碳134.81和208.74 g/(m2·yr)。在中国农业生产中,积极施用有机肥及推广秸秆还田和免耕,农田生态系统土壤的固碳潜力是巨大的。初步估计,目前森林植被的现有碳贮量只有潜在贮量的44.3%,土壤的现有碳贮量只有潜在贮量的90%。

  增加草地固碳量的主要措施包括合理放牧、灌溉、施肥和品种改良等。另外,中国青藏高原高寒湿地、东北湿地以及分布在几大流域的湿地是个巨大的碳库,纳入陆地生态系统碳管理框架具有重要战略意义。当前中国符合《京都议定书》的生态系统碳汇占工业CO2总排放量的4%~6%。到2020年,这个碳汇可提高2~4倍,占工业CO2总排放量的7%~8%。增强陆地生态系统碳吸收与碳管理可在一定程度上减轻中国所面临的温室气体减排压力,为加快中国的工业化进程争取空间和时间。

  如果采用征收碳税的市场手段实现5%或10%的减排目标,需要分别征收每吨碳90.71元和192.9元的碳税。如果将征收的碳税全部用于返还居民,其税率还会略有提高。在征收碳税情形下,各部门的生产成本将增加,电力部门增加的成本分别为5.78%和12.07%,钢铁部门增加0.91%和1.94%,邮电运输业增加0.128%和0.263%。 如果把调整能源结构和征收碳税的措施结合起来,我们可以得到社会总成本略小的方案。例如:“气代煤”1%,征收碳税82.1元/吨碳,可以实现5%的总的减排目标,而居民福利下降0.78%,GDP下降1.51%。

  目前,对生产活动中的节能、提高能效方面的研究比较多,而对居民生活用能研究得比较少。事实上,1999~2002年中国每年全部能源消费量的大约26%、CO2排放的30%是由居民生活行为及满足这些行为需求的经济活动造成的。经过研究,居民的生活用能具有巨大的节约空间。在基本不降低生活水平的前提下,单是在住房、汽车、摩托车和家用电器节能这几项就可以节约能源2176.3万吨标准煤,占2002年居民生活行为用能的11.0%,相当于每年减少1628.8吨碳的CO2排放。

  2018年9月,天津大学地科院晏智锋副教授与联合西北太平洋国家实验室—马里兰大学联合全球气候变化研究所合作,在土壤异养呼吸过程模型构建与应用上取得新进展,首次建立了可精准监测土壤“碳排放”的过程模型系统,该系统可更加精准地预报土壤异养呼吸对大气环境的影响。

  各国学界普遍采用经验模型模拟土壤异养呼吸,空间可拓展性差,给预测区域或全球范围土壤二氧化碳排放带来了很大的不确定性。因此,亟须建立新的土壤异养呼吸的机理或过程模型,提高预测土壤二氧化碳排放及气候变化的准确性。

  晏智锋团队根据土壤异养呼吸的主要控制过程,构建出了一种全新土壤呼吸速率响应土壤含水率变化的过程模型。

  该模型首次融入了土壤属性大数据,重新建立了模型参数和土壤属性之间的定量关系,可更加精确地揭示土壤异养呼吸的微观机理和宏观规律之间的内在联系。与传统的经验模型比,这一新模型普适性和可靠性都有了大幅提升,可明显提高土壤异养呼吸碳排放预测精度。这一新模型的投入使用,有望提高地球系统模式中预测全球气候变化中碳排放的准确性和前瞻性,也为提升气候环境预测准确性提供了新方法和研究思路。

  中国国家发改委建议从2016年起对全国温室气体排放量设置一个绝对上限值,该做法将使排放量目标独立于经济增长.发改委预计中国温室气体排放将在2025年达到峰值,比之前预测的要早五年。

  “发改委正在研究测算温室气体排放达到峰值的时间表,并计划在‘十三五’期间力争实施碳排放总量控制制度,”报道援引未具名的政府官员称。

  十二五规划期间,中国承诺到2020年将每单位国内生产总值(GDP)的碳排放较2005年削减40-45%,允许排放量增长但增速放慢。

  在近期一次工作会议上,国家发改委副主任解振华表示,我国将提出我国2030年及2050年低碳发展路线]

  韩国:为了削减碳排放,将在未来10年执行正在考虑的三个计划中最严格的一个,使2020年的碳排放量比正常水平降低30%。

  减少碳排量当然是人类目前可以做的,但事实是:随着人口的增加和人类在物质上的贪婪蔓延,碳的排放只会与日俱增。谁都不能阻止人类的欲望,直到巨浪到来